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1.  

M = 
2

3 6 4 11

x x

x x

 
 

  
 

 

Given that the matrix M is singular, find the possible values of x. 

(4) 

 

 

2.  f(x) = cos(x
2
) – x + 3, 0 < x < π 

 

(a) Show that the equation f(x) = 0 has a root α in the interval [2.5, 3]. 

(2) 

(b) Use linear interpolation once on the interval [2.5, 3] to find an approximation for α, 

giving your answer to 2 decimal places. 

(3) 

 

 

3.  Given that x = 
1

2
 is a root of the equation 

 

 2x
3
 – 9x

2
 + kx – 13 = 0, k  

 

find 

 

(a) the value of k, 

(3) 

(b) the other 2 roots of the equation. 

(4) 

 

 

4. The rectangular hyperbola H has Cartesian equation xy = 4. 

The point 
2

2 ,P t
t

 
 
 

 lies on H, where t ≠ 0. 

 

(a)  Show that an equation of the normal to H at the point P is 

 

ty – t
3
x = 2 – 2t

4
 

(5) 

 

The normal to H at the point where t = 
1

2
  meets H again at the point Q. 

 

(b)  Find the coordinates of the point Q. 

(4) 
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5. (a)  Use the standard results for 
1

n

r

r


  and 2

1

n

r

r


  to show that 

 

2

1

1
( 2)( 3) ( 9 26)

3

n

r

r r n n n


      

 

for all positive integers n. 

 

(6) 

(b)  Hence show that 

 
3

2

1

2
( 2)( 3) ( )

3

n

r n

r r n an bn c
 

      

 

where a, b and c are integers to be found. 

(4) 

 

 

6. A parabola C has equation y
2
 = 4ax, a > 0 

 

The points P(ap
2
, 2ap) and Q(aq

2
, 2aq) lie on C, where p ≠ 0, q ≠ 0, p ≠ q. 

 

(a)  Show that an equation of the tangent to the parabola at P is 

 

py – x = ap
2
 

(4) 

(b) Write down the equation of the tangent at Q. 

(1) 

 

The tangent at P meets the tangent at Q at the point R. 

 

(c) Find, in terms of p and q, the coordinates of R, giving your answers in their simplest 

form. 

(4) 

 

Given that R lies on the directrix of C, 

 

(d) find the value of pq. 

(2) 
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7.  z1 = 2 + 3i,  z2 = 3 + 2i,  z3 = a + bi,  a, b   

 

(a)  Find the exact value of |z1 + z2|. 

(2) 

 

Given that w = 1 3

2

z z

z
, 

 

(b) find w in terms of a and b, giving your answer in the form x + iy, x, y  . 

(4) 

 

Given also that w = 
17 7

i
13 13

 , 

 

(c) find the value of a and the value of b, 

(3) 

(d) find arg w, giving your answer in radians to 3 decimal places. 

(2) 

 

8.  

A = 
6 2

4 1

 
 
 

 

 

and I is the 2 × 2 identity matrix. 

 

(a) Prove that 
 

A
2
 = 7A + 2I 

(2) 

(b) Hence show that 
 

A
–1

 = 
1

2
(A – 7I) 

(2) 

 

The transformation represented by A maps the point P onto the point Q. 

 

Given that Q has coordinates (2k + 8, –2k – 5), where k is a constant, 

 

(c) find, in terms of k, the coordinates of P. 

(4) 
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9. (a)  A sequence of numbers is defined by 

 

u1 = 8 

 

un + 1 = 4un – 9n, n ≥ 1 

 

Prove by induction that, for n  , 

 

un = 4
n
 + 3n +1 

(5) 

(b)  Prove by induction that, for m  , 

 

3 4 2 1 4

1 1 1 2

m
m m

m m

     
   

    
 

(5) 

 

 

 

TOTAL FOR PAPER: 75 MARKS 

 

 

END 



 

 

 
Question 
Number 

Scheme Notes  
Marks 

  
1. 2

3 6 4 11
x x

x x
−⎛ ⎞

=⎜ ⎟− −⎝ ⎠
M  

 
 

 detM = x(4x – 11) – (3x – 6)(x – 2) Correct attempt at determinant M1 
 x2 + x – 12 (=0) Correct 3 term quadratic A1 

(x + 4)(x – 3) (= 0 )  x = ... 

Their 3TQ = 0 and attempts to solve 
relevant quadratic using factorisation or 
completing the square or correct quadratic 
formula leading to x = 

M1 

                     4,  3x x= − =   Both values correct A1 
   (4)

  
 Total 4 

Notes   

 x(4x – 11) = (3x – 6)(x – 2) award first M1  
 ±(x2 + x – 12) seen award first M1A1  
 Method mark for solving 3 term quadratic: 

1. Factorisation 
2( ) ( )( ),  where , leading to x =x bx c x p x q pq c+ + = + + =  

2( ) ( )( ),  where  and , leading to xax bx c mx p nx q pq c mn a+ + = + + = = =  

  
2. Formula 
 Attempt to use correct formula (with values for a, b and c). 
 
3. Completing the square 

2
2Solving 0 :     ,     0,    leading to x =...

2
bx bx c x q c q⎛ ⎞+ + = ± ± ± ≠⎜ ⎟

⎝ ⎠
 

 

 Both correct with no working 4/4, only one correct 0/4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Question 
Number 

Scheme 
 

Notes 
 

 
Marks 

2 ( )2f ( ) cos 3x x x= − +
 

 

(a) 
f(2.5) = 1.499..... 
f(3) = -0.9111..... 

Either any one of f(2.5) = awrt 1.5 or  
f(3) = awrt -0.91

 
M1  

 

Sign change (positive, negative) (and f ( )x is 
continuous) therefore root or equivalent.

Both f(2.5) = awrt 1.5 and f(3) = awrt -0.91, 
sign change and conclusion. A1 

Use of degrees gives f(2.5) = 1.494 and f(3) = 0.988 which is awarded M1A0 (2)
(b) 

  
3 2.5

"0.91113026188" "1.4994494182"
α α− −

=
Correct linear interpolation method – 
accept equivalent equation  - ensure signs 
are correct. 

M1 A1ft 

 3 1.499... 2.5 0.9111....
1.499... 0.9111....

α × + ×
=

+
   

 2.81α = (2d.p.) cao A1 

   (3)

  Total 5 
Notes Alternative (b)   
 

Gradient of line is 
'1.499...' '0.9111...' ( 4.82)

0.5
+

− = − (3sf). Attempt to find equation of 

straight line and equate y to 0 award M1 and A1ft for their gradient awrt 3sf. 

 



 

 

 
Question 
Number 

Scheme Notes 
 

Marks 

3(a) Ignore part labels and mark part (a) and part (b) together.  
 3 21 1 1 1f 2 9 13

2 2 2 2
k⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 Attempts f(0.5) M1 

1 9 13 0 ......
4 4 2

k k⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − = ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 Sets f(0.5) = 0 and leading to  k= dM1 

k = 30 cao A1 
Alternative using long division:  

( )3 2

2

2 9 13 2 1
14 2(Quotient)
2
1Re mainder 15
2

x x kx x

x x k

k

− + − ÷ −

= − + −

−

 Full method to obtain a remainder as a 
function of k M1 

1 15 0
2

k − = Their remainder = 0 dM1 

30k =  A1 
Alternative by inspection:  

2 3 2(2 1)( 4 13) 2 9 30 13x x x x x x− − + = − + −  

First M for  (2 1)x − ( 2x bx c+ + ) or 
1( )
2

x − ( 22x bx c+ + ) 

Second M1 for  2ax bx c+ + where              
( 4 or 13b c= − = )or ( 8 or 26b c= − = ) 

M1dM1 

k = 30  A1 
   (3)
(b) 

( )( )

( )

2

2

f ( ) 2 1 4 13

1 2 8 26
2

x x x x

or x x x

= − − +

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

 

M1: 2( 13)x bx+ ± or 2(2 26)x bx+ ±  
Uses inspection or long division or 
compares coefficients and (2x – 1) or 

1
2

x⎛ ⎞−⎜ ⎟
⎝ ⎠

to obtain a quadratic factor of this 

form. 

M1 

2 4 13x x− + or 22 8 26x x− +
 

A1 2( 4 13)x x− + or 2(2 8 26)x x− +  
seen 

A1 

 24 4 4 13
2

x ± − ×
= or equivalent 

Use of correct quadratic formula for their 
3TQ or completes the square.  M1 

 4 6 2 3
2

ix i±
= = ±  oe A1 

   (4)
   Total 7 



 

 

 
 
Question 
Number 

Scheme 
 

Notes 
 

 
Marks 

 
4(a) 1 2

2

d4 44 4
d
yy x x

x x x
− −= = ⇒ = − = −

 
2d

d
y k x
x

−=  

M1 
d4 0
d
yxy x y
x

= ⇒ + =  

Use of the product rule. The sum of 
two terms including dy/dx, one of 
which is correct. 
 

 

2

d d d 2 1. .
d d d 2
y y t
x t x t
= = −      

 
their d 1

dd their
d

y
xt
t

⎛ ⎞
⎜ ⎟

× ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
2

2

d d d 2 14 0  or .
d d d 2
y y yx or x y
x x x t

−= − + = = −
 

or equivalent expressions 

Correct derivative 24x−− ,  y
x

−  or 2

1
t
−

  A1 

2So , Nm t=  Perpendicular gradient rule 1N Tm m = −  M1 

( )22 2y t x t
t

− = −
 

( )2 their 2 or

2with their and (2 , ) in

an attempt to find ' '.

N

N

y m x t
t

y mx c m t
t

c

− = −

= +

 
Their  gradient of the normal must be 
different from their gradient of the 
tangent and have come from calculus 
and  should be a function of t. 

M1 

 3 42 2 *ty t x t− = −
 

A1* cso 

  (5)

(b) 
3 41 1 1 12 2

2 2 2 2
t y x⎛ ⎞ ⎛ ⎞= − ⇒ − − − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Substitutes the given value of t into the 

normal M1 

 

4 15 0y x− + =    

24 15 16 0y x x
x

= ⇒ − − = or 

22 82 , 2 15 0 2 15 8 0t t t t
t t

⎛ ⎞→ − + = ⇒ − − =⎜ ⎟
⎝ ⎠

or 

24 4 15 4 0x y y
y

= ⇒ + − = . 

Substitutes to give a quadratic M1 

( ) ( )1 16 0x x x+ − = ⇒ =  or 

( )( )2t +1 8 0t t− = ⇒ = or 

( ) ( )4 1 4 0y y y− + = ⇒ =  

Solves their 3TQ M1 

1( : 1, 4)( :) 16,
4

P x y Q x y= − = − = =  Correct values for x and y A1 

 (4)
  Total 9 



 

 

 
 
Question 
Number 

Scheme Notes 
 

Marks 

 
5(a) ( )( ) 22 3 5 6r r r r+ + = + +   B1 

( ) ( )( ) ( )2 1 1
5 6 1 2 1 5 1 , 6

6 2
r r n n n n n n+ + = + + + × + +∑  

M1: Use of correct 
expressions for

2r r∑ ∑and  M1,B1ft 

B1ft: k nk=∑  

( )( ) ( )1 1 151 2 1 1 18
3 2 2

n n n n⎡ ⎤= + + + + +⎢ ⎥⎣ ⎦
 

M1:Factors out n ignoring 
treatment of constant. 

M1 A1 A1: Correct expression with 
1
3

n  or 
1
6

n  factored out, 

allow recovery. 
21 3 1 15 15 18

3 2 2 2 2
n n n n⎛ ⎞⎡ ⎤= + + + + +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠  

 
21 9 26 *

3
n n n⎡ ⎤= + +⎣ ⎦  

Correct completion to 
printed answer A1*cso 

  (6)
5(b) 

( ) ( )( ) ( )
3

2 2

1

1
9

3
13 3 3 26 9 26
3

n

r n
n n n n n n

= +

= + + − + +∑  
M1: f(3n) – f(n or n+1) and 
attempt to use part (a). 
A1: Equivalent correct 
expression 

M1A1 
 

3f(n) – f(n or n+1) is M0  

 
( ) ( )2 2( 27

19 26 9 26 )
3

n nn n n n= + + − + +
 

 
 

 

 
2 22 27 81 1 939 13

3 2 2 2 2
n n n n n= ⎛ ⎞+ + − − −⎜ ⎟
⎝ ⎠

 

 

 

Factors out  2
3

n=    

dependent on previous M1 
 
 

 
 
dM1 

( )22 13 36 26
3

n n n= + +  Accept correct expression. A1 

( 13, 36, 26)a b c= = =    

  (4)

   Total 10 
 
 
 
 
 
 



 

 

 
 
 
 

 
Question 
Number 

Scheme 
 

Notes 
 

 
Marks 

 
6(a) 

1 1 1 1
2 2 2 2d2

d
yy a x a x
x

−
= ⇒ =  

1 1
2 2x x

−
→

 
 
M1 
 

2 d4 2 4
d
yy ax y a
x

= ⇒ =
 

d
d
yky c
x
=

 
 
 

or 
d d d 1. 2 .
d d d 2
y y t a
x t x ap
= =

 
 d 1

dd
d

y
xt
t

× . Can be a function of p or t. 

1 1
2 2d d d 1 or  2 4  or 2 .

d d d 2
y y ya x y a a
x x x ap

−
= = =

 

Differentiation is accurate. A1 

          212 ( )y ap x ap
p

− = −  

Applies   ( )22 theiry ap m x ap− = −  

or ( )theiry m x c= +   using    
2 2x ap and y ap= =  in an attempt to find 

c. Their m must be a function of p from 
calculus. 

M1 

 py – x = ap2  * Correct completion to printed answer* A1 cso 
   (4)

(b) qy – x = aq2   B1 

  (1)
(c) qy – aq2= py – ap2 

Attempt to obtain an equation in one 
variable x or y 

M1 

( ) 2 2

2 2

y q p aq ap

aq apy
q p

− = −

−
=

−

 Attempt to isolate x or y M1 

( )y a p q or ap aq
x apq
= + +
=

 
A1: Either one correct simplified 
coordinate 
A1: Both correct simplified coordinates  

A1,A1 

 ( ( , ))R apq ap aq+    
   (4)
(d) 

' 'apq a= −   Their x coordinate of R = a−   M1 

1pq = −   Answer only: Scores 2/2 if x 
coordinate of R is apq otherwise 0/2. A1 

  (2)
  Total 11 



 

 

 
Question 
Number 

Scheme Notes 
 

Marks 

 
7 1 22 3i, 3 2iz z= + = +   

 
(a) 2 2

1 2 1 25 5i 5 5z z z z+ = + ⇒ + = +  Adds z1 and z2 and correct use of 
Pythagoras. i under square root award M0. M1 

 50 ( 5 2)=   A1 cao 
  (2)

(b) 

( )
( )( )

1 3

2

(2 3i)( i)
3 2i

(2 3i)( i) 3 2
3 2i 3 2i

z z a b
z

a b i

+ +
=

+

+ + −
=

+ −

 
Substitutes for  1 2 3, z and zz  and multiplies 

by   3 2i
3 2i
−
−

 

 
 
M1 

( )( )3 2i 3 2i 13+ − =  13 seen. B1 

 

1 3

2

(12 5 ) (5 12 )i
13

z z a b a b
z

− + +
=  

M1: Obtains a numerator with 2 real and 2 
imaginary parts. 

dM1A1 A1: As stated or 
(12 5 ) (5 12 ) i

13 13
a b a b− +

+  

ONLY. 
  (4)

(c) 12 5 17
5 12 7

a b
a b

− =
+ = −

 
Compares real and imaginary parts to 
obtain 2 equations which both involve a 
and b. Condone sign errors only. 

M1 

 
  

60 25 85
60 144 84

a b
a b
− =
+ = −

 ⇒   1b = −  Solves as far as a = or b = dM1 

a = 1, b = -1 Both correct A1 

 Correct answers with no working award 
3/3. 

  (3)
(d) 1 7arg( ) tan

17
w − ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
 Accept use of 1tan  or tan−± ± . 

awrt 0.391± or 5.89± implies M1. M1 

 =awrt 0.391 or awrt 5.89−    A1 

  (2)
  Total 11 
 
 
 
 
 
 
 



 

 

 
Question 
Number 

Scheme Notes 
 

Marks 

 
8(a) 

2 6 2 6 2 44 14
4 1 4 1 28 9

42 14 2 0 44 14
7 2

28 7 0 2 28 9

− − −⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

A

A I
 

M1:Attempt both A2 and 7A + 2I 

M1A1 
A1: Both matrices correct 

OR ( )2 7 7− = −A A A A I  
M1 for expression and attempt to 
substitute and multiply 
(2x2)(2x2)=2x2 

( ) 6 2 1 2 2 0
7 2

4 1 4 6 0 2
− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
A A I I  A1 cso 

  (2)
(b) 

2 7 2 7 2= + ⇒ = + -1A A I A I A  

Require one correct line using 
accurate expressions involving 

-1A  and identity matrix to be 
clearly stated as I . 

M1 

( )1 7
2

= −-1A A I *  A1* cso 

Numerical approach award 0/2.   

  (2)
(c) 1 21

4 62
− −⎛ ⎞

= ⎜ ⎟− −⎝ ⎠
-1A  

 

Correct inverse matrix or 
equivalent 
 

B1 

1 2 2 8 2 8 4 101 1
4 6 2 5 8 32 12 302 2

k k k
k k k

− − + − − + +⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − − − + +⎝ ⎠⎝ ⎠ ⎝ ⎠

 
 

Matrix multiplication involving 
their inverse and k: 
(2x2)(2x1)=2x1.  
N.B. 

6 2 2 8
4 1 2 5

k
k

− +⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠

is M0 

 
 

M1 

( )
1

 or  1, 2 1
2 1
k

k k
k
+⎛ ⎞

+ −⎜ ⎟−⎝ ⎠  
( 1)k + first A1, (2 1)k − second A1 A1,A1 

Or:   
6 2 2 8
4 1 2 5

x k
y k

− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 Correct matrix equation. B1 

6 2 2 8
4 2 5 ... ...
x y k

x y k x or y
− = +

− + = − − ⇒ = =
 

Multiply out and attempt to solve 
simultaneous equations for x or y in 
terms of k.

M1 

( )
1

 or  1, 2 1
2 1
k

k k
k
+⎛ ⎞

+ −⎜ ⎟−⎝ ⎠
 ( 1)k + first A1, (2 1)k − second A1 A1,A1 

  (4)
   Total 8 
 



 

 

 
Question 
Number 

Scheme Notes 
 

Marks 

 
9(a) 

1 8 givenu =   
1

11 4 3(1) 1 8 ( true for 1)n u n= ⇒ = + + = ∴ =  
 14 3(1) 1 8+ + = seen B1 

Assume true for n = k so that 4 3 1k
ku k= + +    

( )1 4 4 3 1 9k
ku k k+ = + + −  

Substitute ku  into 1ku +  as 

1 4 9k ku u k+ = −  
M1  

1 14 12 4 9 4 3 4k kk k k+ += + + − = + +  1

Expression of the form 
4k ak b+ + +   A1 

 ( )14 3 1 1k k+= + + +  Correct completion to an 
expression in terms of k + 1 A1 

If true for n = k then true for n = k + 1 and as true for  
n = 1 true for all n 

Conclusion with all 4 
underlined elements that can 
be seen anywhere in the 
solution; n defined 
incorrectly award A0. 

A1 cso 

   (5)
(b) Condone use of n here.  
 13 4 3 4

1 1 1 1
lhs

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠  

 
2(1) 1 4(1) 3 4

1 1 2(1) 1 1
rhs

+ − −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

Shows true for m = 1 B1  

3 4 2 1 4
Assume

1 1 1 2

k k k
k k

− + −⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

  
 

 
13 4 2 1 4 3 4

1 1 1 2 1 1

k k k
k k

+− + − −⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠  

3 4 2 1 4
1 1 1 2

k k
k k

− + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

award M1 
 

M1 

6 3 4 8 4 4
3 1 2 4 1 2
k k k k
k k k k
+ − − − +⎛ ⎞

= ⎜ ⎟+ − − − +⎝ ⎠
 

Or equivalent 2x2 matrix. 
6 3 4 12 4 8
2 1 4 1 2
k k k k
k k k k
+ − − − +⎛ ⎞

⎜ ⎟+ − − − +⎝ ⎠
award A1from above. 

A1 

2 3 4 4

1 2 1

k k

k k

+ − −
=

+ − −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠  

 
 
 

 
 
 

( ) ( )
( )

2 1 4
1 1 2

1 1
1k

k k
k

+ −
=

+ −

⎛ ⎞+ +
⎜ ⎟+⎝ ⎠

 Correct completion to a 
matrix in terms of k + 1 A1 

If true for m = k then true for m = k + 1 and as true 
for m = 1 true for all m 

Conclusion with all 4 
underlined elements that can 
be seen anywhere in the 
solution; m defined 
incorrectly award A0. 

A1 cso 

   (5)
   Total 10 


